Simulation and optimization of GaN-based metal-oxide-semiconductor high-electron-mobility-transistor using field-dependent drift velocity model
نویسندگان
چکیده
Undoped GaN-based metal-oxide-semiconductor high-electron-mobility-transistors MOS-HEMTs with atomic-layer-deposited Al2O3 gate dielectrics are fabricated with gate lengths from 1 μm up to 40 μm. With a two-dimensional numerical simulator, we report simulation results of the GaN-based MOS-HEMTs using field-dependent drift velocity model. A developed model, taking into account polarization-induced charges and defect-induced traps at all of the interfaces and process-related trap levels of bulk traps measured from experiments, is built. The simulated output characteristics are in good agreement with reported experimental data. The effect of the high field at the drain-side gate edge and bulk trap density of GaN on the output performance is discussed in detail for the device optimization. AlGaN/GaN/AlN quantum-well QW MOS-HEMTs have been proposed and demonstrated based on numerical simulations. The simulation results also link the current collapse with electrons spreading into the bulk, and confirm that a better electron localization can dramatically reduce the current collapse for the QW-MOS-HEMTs. Due to the large band edge discontinuity and effective quantum confinement of the AlGaN/GaN/AlN quantum well, the parasitic conduction in the bulk is completely eliminated. © 2007 American Institute of Physics. DOI: 10.1063/1.2764206
منابع مشابه
A modified transferred-electron high-field mobility model for GaN devices simulation
An approximation formula for electron high-field mobility in GaN is proposed. One is tested in wide range of temperatures and doping concentrations and is able to replicate the specific electron drift velocity dependence on electric field in GaN more accurately than conventionally used Canali and transferred-electron models. The simulations of the current–voltage characteristics of GaN metal–se...
متن کاملStudy of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high- electron-mobility transistors by use of ac transconductance method
Articles you may be interested in Investigation of gate leakage mechanism in Al2O3/Al0.55Ga0.45N/GaN metal-oxide-semiconductor high-electron-mobility transistors Appl. Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors Quantitative characterization of interface traps in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-...
متن کاملA compact quantum correction model for symmetric double gate metal-oxide- semiconductor field-effect transistor
Articles you may be interested in Possible unified model for the Hooge parameter in inversion-layer-channel metal-oxide-semiconductor field-effect transistors J. Threshold voltage modeling under size quantization for ultra-thin silicon double-gate metal-oxide-semiconductor field-effect transistor GaN metal-oxide-semiconductor field-effect transistor inversion channel mobility modeling Modeling ...
متن کاملSimulation Model Development for Packaged Cascode Gallium Nitride Field-Effect Transistors
This paper presents a simple behavioral model with experimentally extracted parameters for packaged cascode gallium nitride (GaN) field-effect transistors (FETs). This study combined a level-1 metal–oxide–semiconductor field-effect transistor (MOSFET), a junction field-effect transistor (JFET), and a diode model to simulate a cascode GaN FET, in which a JFET was used to simulate a metal-insulat...
متن کاملAu th or ' s pe rs on al co
We report on a GaN metal-oxide-semiconductor field-effect-transistor (MOSFET) using atomic-layer-deposited (ALD) Al2O3 as the gate dielectric. Compared to a GaN metal-semiconductor field-effect-transistor (MESFET) of similar design, the MOSFET exhibits several orders of magnitude lower gate leakage and near three times higher channel current. This implies that the ALD Al2O3/GaN interface is of ...
متن کامل